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ABSTRACT
In many river basins around the world, inaccessibility of flow data is a major obstacle to water resource studies and operational monitoring. This paper
describes a geospatial streamflow modeling system which is parameterized with global terrain, soils and land cover data and run operationally with
satellite-derived precipitation and evapotranspiration datasets. Simple linear methods transfer water through the subsurface, overland and river flow
phases, and the resulting flows are expressed in terms of standard deviations from mean annual flow. In sample applications, the modeling system was
used to simulate flow variations in the Congo, Niger, Nile, Zambezi, Orange and Lake Chad basins between 1998 and 2005, and the resulting flows
were compared with mean monthly values from the open-access Global River Discharge Database. While the uncalibrated model cannot predict the
absolute magnitude of flow, it can quantify flow anomalies in terms of relative departures from mean flow. Most of the severe flood events identified
in the flow anomalies were independently verified by the Dartmouth Flood Observatory (DFO) and the Emergency Disaster Database (EM-DAT).
Despite its limitations, the modeling system is valuable for rapid characterization of the relative magnitude of flood hazards and seasonal flow changes
in data sparse settings.
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1 Introduction

In situ river gauges have served as the primary method for oper-
ational monitoring of streamflow conditions and for obtaining
data required for managing water resources, quality and haz-
ards posed by extreme hydrologic events. However, the past two
decades have seen serious declines in global streamflow moni-
toring infrastructure, particularly in the poorest countries in the
world, which are most vulnerable to changes in water quantity and
hazards characteristics (Stokstad, 1999). Increased frequency of
extreme precipitation, temperature and drought events associated
with global climate change (Intergovernmental Panel on Climate
Change, 2007) could further contribute to the decline in availabil-
ity of hydrologic information in some parts of the world. Extreme
floods destroy river gauging infrastructure while low flows asso-
ciated with droughts tend to concentrate in small rills away from
the river gauges. In light of these limitations, hydrologic model-
ing is becoming an increasingly important complement to in situ
gauges for monitoring streamflow.

Numerous rainfall-runoff models of varying complexity have
also been developed for estimating design flows. Most of these
models are designed for use in small river basins, and they include
hydrologic processes that do not scale up well to large river basins.
Other water resource models employing statistical approaches
such as neural networks to extract implicit relationships between
rainfall and runoff require observed streamflow data representing
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a wide range of hydrologic conditions for training. The climate
modeling community has also developed a series of large-area
models such as the Variable Infiltration Capacity (VIC) model
of Liang et al. (1994) for use in climate change analysis. Flows
generated with input from Global Climate Models (GCMs) are
not suitable for short-range, operational monitoring. Full sup-
ported operational modeling systems such as the U.S. National
Weather Service River Forecast System (Monroe and Anderson,
1974) and the European Flood Forecasting System (De Roo et al.,
2003) are also in use in data rich settings.

The challenge in data sparse environments is to develop mod-
els that can provide useful information on current streamflow
conditions without the requirement for observed streamflow data
for model initialization, calibration or training. Progress is being
made in the development of methods for streamflow prediction in
ungauged basins through initiatives such as the Model Parameter
Estimation Experiment (MOPEX) (Schaake et al., 2001), the Pre-
diction in Ungaged Basins (PUB) (Sivapalan et al., 2006), and
the Distributed Model Intercomparison Project (DMIP) (Reed
et al., 2004). However, there is a present need for hydrologic
models which can be set up with currently available datasets
for streamflow applications in data sparse settings. In this paper,
we present the development of a geospatial streamflow model-
ing system which is capable of producing current streamflow
information from globally available initialization and forcing
datasets.
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1.1 Study sites

The six largest basins in Africa, namely the Congo
(3,731,000 km2), the Niger (2,262,000 km2), the Nile
(3,255,000 km2), the Zambezi (1,332,000 km2), the Orange
(941,000 km2) and Lake Chad (2,498,000 km2), were selected
as study sites. Each of the basins has a completely different set
of climatic and geophysical characteristics, providing the vari-
ety necessary to test the performance of a large-area hydrologic
model. The Congo basin, which has the second largest discharges
of any river in the world, is almost entirely covered by forests.
The Nile, one of the longest rivers in the world, traverses a range
of climatic conditions ranging from tropical and upland forests to
Mediterranean, semiarid and desert conditions. The Niger origi-
nates in the Guinean highlands, makes it way through the Inner
Delta in Mali and flows through the arid regions of the Sahel
before joining the Benue River on its way to the tropical forests
and finally the delta outlet near Port Harcourt in Nigeria. Unlike
the other river systems, the Chad basin is an inland catchment
which terminates in a series of inland lakes. Many of the lakes are
currently not linked due to long-term drought and over utilization
of water resources. Each lake could consequently be considered
as an independent terminal sink for delineation purposes. How-
ever, a single terminal sink, located in Lake Chad, is adopted in
this study to ensure consistency of basin boundaries with prior
delineations, such as those of Revenga et al. (1998) and Olivera
et al. (2000).

2 The Geospatial streamflow modeling system

The modeling system consists of the stand-alone Geospatial
Streamflow Model (GeoSFM) software (Asante et al., 2007a),
a baseline parameterization service and an operational data pro-
cessing service which support end user applications as shown in
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Figure 1 Components of the Geospatial Streamflow Modeling System.

Figure 1. The GeoSFM software is a semi-distributed hydrologic
model developed as an extension of the ArcView Geographic
Information System (GIS) software. It contains GIS-based pre-
processing and post-processing modules and a hydrologic routing
module that uses dynamically linked libraries (DLLs), created
in a mixed-programming environment, to perform hydrologic
computations and time series manipulation. The U.S. Geologi-
cal Survey (USGS) Center for Earth Resources Observation and
Science (EROS), where the modeling system was developed,
maintains the operational data services.

The first pre-processing step is a terrain analysis undertaken to
subdivide the study area into catchments and river modeling units
and to extract terrain-dependent parameters from a Digital Ele-
vation Model (DEM). The HYDRO1K global elevation dataset
(Verdin and Greenlee, 1996) is distributed as the standard dataset
for baseline parameterization. Other higher resolution elevation
datasets such as the Shuttle Radar Topography Mission (SRTM)
data, which are also available from the USGS EROS site, can also
be used in GeoSFM. For this study, a terrain analysis was under-
taken with a minimum contributing area threshold of 5,000 km2

for stream network initiation. For the six study basins, the analy-
sis generated between 120 and 385 catchments, with an average
area of 8,750 km2 and an associated river reach about 110 km
in length. The catchment and river network delineations for the
Chad, Congo, Niger, Nile, Orange and Zambezi basins are shown
in Figure 2. Other parameters such as flow direction, upstream
drainage area, distance to the nearest stream channel, distance to
the basin outlet, and the downstream river reach number are also
derived using automated GIS routines in GeoSFM.

The second pre-processing task in the GeoSFM model is the
parameterization of the hydrologic modeling units delineated
in the first pre-processing step. The terrain analysis parameters
described in the preceding paragraph are aggregated to obtain a
single value of each parameter for each catchment. Additionally,
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Figure 2 Map of Africa showing the Congo, Niger, Nile, Zambezi,
Orange and Lake Chad basins and river networks delineated. The
location of stream gauges used in the study are also shown.

remotely sensed vegetation from the Global Land Cover Charac-
teristics (GLCC) database (Loveland et al., 2000) and digital soil
data from the Digital Soil Map of the World (Food and Agricul-
ture Organization, 1998) and the World Soil File (Zobler, 1986)
are introduced to determine the predominant land cover and soil
texture classes in each catchment. Based on these classes, pub-
lished values of Manning roughness coefficient (McCuen, 1998)
and soil parameters such as water holding capacity and hydraulic
conductivity (Webb et al., 1993) are assigned to each catchment.
Dispersion coefficient for the diffusion analog equation is com-
puted from the Muskingum X assigned to each river reach by
equating the second moments (Dooge, 1973) of the response
functions for the Muskingum and diffusion analog equations.
Since values of Muskingum X can be estimated using rules of
thumb (McCuen, 1998), corresponding values of the dispersion
coefficient can be obtained for each river reach of known length
and celerity.

2.1 Satellite-derived fluxes

The primary input fluxes for GeoSFM are satellite-derived precip-
itation and evapotranspiration. The operational data processing
system supports the daily processing and distribution of these
datasets. The Tropical Rainfall Measuring Mission (TRMM) of
the U.S. NationalAeronautics and SpaceAdministration (NASA)
produces merged three-hourly rainfall rates incorporating space-
borne radar, microwave data and infrared imagery. These data
are processed at USGS EROS to convert them to daily accumu-
lations and reformatted to GIS-ready images. The NASA TRMM
product (version 3B42) covers the tropics between 50o north and
50o south with grid cells of spatial resolution 0.25o by 0.25o.

The NASA TRMM products have a daily climatology beginning
in 1998 to the present. Operationally, the most current products
are made available about 12 hours after the end of the collection
period. While other satellite-derived rainfall products are avail-
able, the NASA TRMM products are used in this application
because of their superior performance in regions with limited
situ gauges (Dinku et al., 2007).

The operational data processing system also produces and dis-
tributes a daily reference evapotranspiration (ETo) dataset with
global coverage as described in Verdin and Klaver (2002). The
dataset is produced by ingesting output fields from NOAA’s
Global Data Assimilation System (GDAS) (Kanamitsu, 1989)
into the Penman-Monteith equation (1). It assumes a hypotheti-
cal reference crop with an assumed crop height of 0.12 m, a fixed
surface resistance of 70 s m−1 and an albedo of 0.23 (Allen et al.,
1998). The computation is performed at an hourly interval and
aggregated to obtain a daily value of ET o. However, the input
fields remain constant for at least 6 hours during the computation
since GDAS data are updated every 6 hours.

ETo =
24∑
t=1

(
1

(� + γ(1 + 0.34u2))

)

∗
[
(0.408� (Rn − G)) +

(
37γu2 (es − ea)

(T + 273)

)]
(1)

where ETo is the reference evapotranspiration [mm day−1], is the
slope of the saturation vapour pressure [kPa ◦C−1], is the psychro-
metric constant [kPa ◦C−1], is the wind speed at 2 m above the
ground surface [m s−1], is the net radiation [MJ m−2 day−1], is
the soil heat flux [MJ m−2 day−1], T is the air temperature [◦C], is
the saturation vapour pressure [kPa ◦C−1] and is the actual vapour
pressure [kPa ◦C−1].

The radiation and heat fluxes are generated by the GDAS
model while the vapour pressure terms (�, γ , es and ea) are com-
puted from GDAS temperature and humidity fields. Wind fields
computed by GDAS at 10 m heights are downscaled to obtain
2 m wind fields for use in the evapotranspiration computations.
The resulting product has a spatial resolution of 1◦ by 1◦.

2.2 Flow routing

In simulating flow, mean areal precipitation and evapotran-
spiration values for each catchment are determined by spatial
averaging of daily rainfall and ETo grids, and the resulting time
series are stored in ASCII files. GeoSFM contains a number of
linear and non-linear routines for soil moisture accounting and
in-stream flow routing. The simpler linear soil accounting routine
is used in this application. It employs variable contributing areas
(based on degree of saturation) for surface runoff generation and
a linear reservoir for subsurface runoff generation. The equations
described in this section are applied to each of the small catch-
ments which have a typical area of approximately 8,750 km2. For
each daily time step, the change in soil moisture storage in each
catchment is computed from the continuity equation (2).

�Si
j

�t
= Pi

j − Ei
j − Ri

j − Gi
j (2)
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where Pi
j is the precipitation in mm at time i, Ei

j is the actual
evapotranspiration in mm computed as the lower of ETo and
available soil moisture, Ri

j is the total runoff in mm, Gi
j is the

deep percolation to ground water in mm and Si
j is the available

soil moisture in mm at time i. The actual evapotranspiration is
limited by the lower of the ETo and the moisture available in soil
storage.

The rate of percolation to deep ground water is governed by
a linear reservoir with residence time computed as the total soil
depth divided by the saturated hydraulic conductivity as shown
in equation (3).

Gi
j = Si

j · Ksj

SDEPTHj

· exp

(
− Ksj

SDEPTHj

)
(3)

where Gi
j is the percolation for each day in mm at time i,

SDEPTHj is the soil depth in mm and Ksj is the saturated
hydraulic conductivity in mm/day.

The total runoff is computed as a summation of the excess
precipitation and the baseflow generated from soil storage using
linear reservoir functions with quick and slow components. If the
soil column is saturated, all excess precipitation is converted to
runoff. For unsaturated soil conditions, runoff is generated by
using partial contributing areas as given by equation (4).

Ri
j = Pi

j · f

(
Si

j

SMAXj

)
(4)

where Ri
j is the runoff for each day in mm at time i, Si

j is the
available soil moisture in mm at time i, SMAXj is the soil water
holding capacity in mm and f is a function defining the rela-
tionship between percent soil saturation and percent impervious
cover.

A dimensionless unit hydrograph is generated for each catch-
ment by discretizing the flow times for grid cells within the
catchment. The unit hydrograph is used to route runoff from
the water balance to the catchment outlet where it enters the next
downstream river reach as shown in equation (5).

qi
j = 0.001 · A·

jR
i
j ∗

m∑
i=1

Uj (5)

where qi
j is the overland flow in m3/s arriving at the catchment

outlet j at time i, Aj is the surface area of the runoff generating
unit in m2, Uj is the dimensionless unit hydrograph for catchment
j, and ∗ is the convolution integral.

At the catchment outlet, overland flow is added to flow already
in the river reach from upstream catchments and routed to the next
downstream end of the river reach. The distribution of inflow at
the upstream end of each river reach which arrives at the down-
stream end of the same reach is computed using the diffusion
analog equation (6).

hj(t) = xj√
4πDjt3

· exp

[
− (xj − vjt)

2

4Djt

]
(6)

where hj(t) is the fraction of inflow arriving at the downstream
end of each river reach, xj is the length of each river reach in
m, vj is the kinematic wave velocity in m/s, Dj is the dispersion
coefficient in m2/s, and t is the time after input in seconds.

The discharge at the downstream end of each river reach is
computed by convolving the diffusion analog response func-
tion with flow entering the upstream end (equation 7), and the
discharge is passed on as inflow to the next downstream river
reach.

Qi
j = hj(t) ∗

n∑
k=1

qi
k (7)

where Qi
j is the discharge arriving at the outlet of river reach j in

m3/s, qi
k is the inflow from each river entering the upstream end

of reach j in m3/s, n is the number of river reaches immediately
upstream of reach j, and ∗ is the convolution integral. For each
simulation time step, daily flow values, in m3/s, for the down-
stream end of each of the 100 or more river reaches in the study
basin are estimated and written to an output file. However, these
flow values contain significant biases which must be taken into
consideration when interpreting model results.

2.3 Interpreting simulation results

A number of validation studies have been conducted with TRMM
and other satellite-derived rainfall estimates in various part of
Africa including the Sahel (Nicholson et al., 2003), the East
Africa highlands (Dinku et al., 2007) and zones representing
arid, semiarid, savanna and tropical wet climates (Adeyewa and
Nakaruma, 2003). These studies indicate the existence of strong
regional and seasonal biases attributable to variations in rainfall
generation-mechanisms, intensity and frequency. It is therefore
necessary to apply bias corrections based on in-situ gauge data
before the satellite-derived rainfall estimates can be used to model
streamflow quantities (Hughes, 2006; Artan et al., 2007). How-
ever, bias correction is not always possible since in-situ gauge
data are often not readily available or easily accessible.

To facilitate streamflow monitoring with satellite-derived rain-
fall in the absence of bias correction, daily streamflow values
from GeoSFM simulations are aggregated to monthly intervals
and presented as relative anomalies rather than absolute flows.
The aggregation reduces the impact of random errors while the
use of relative anomalies reduces the impact of systematic biases.
Conversion from absolute to relative flows is achieved by com-
paring modeled flows to similarly modeled flows from preceding
time periods. The monthly flows are first converted to anomalies
by subtracting the long-term mean flows. The anomalies are then
divided by the standard deviation computed from the 12 monthly
values in an average year. Computing anomalies this way limits
the range of flow anomalies to a few standard deviations, allow-
ing hydrographs from different basins to be compared alongside
each other.

3 Sample simulation results

3.1 Flow regime characterization

Characterizing the normal patterns of seasonal flow variation and
the predictability of these patterns provides useful information for
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Niger Basin at Niamey
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Nile Basin at Aswan
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Orange River at Vioolsdrif
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Zambezi River at Matundo Cais
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Figure 3 A comparison of characteristic monthly flow hydrographs from GeoSFM simulations and stream gauge data from the Global River Discharge
Database. The monthly flows are expressed in number of standard deviations from mean flow.

understanding and managing a river system. The normal patterns
also provide a context for comparison of future events or climate-
related changes. Figure 3 shows mean monthly flows in the six
test basins during the simulation period from January 1998 to
December 2005. The dark continuous lines on the graph show
flows presented in terms of the standard deviation among monthly
values during the mean year. The dark dotted lines show the
mean monthly flows from the Global River Discharge Database
(RivDIS) of Vörösmarty et al. (1996) which contains flows for
hydrometric stations around the world. RivDIS includes records
spanning the period 1813 to 1991. However, the actual period of
record for most stations is significantly shorter with a mean of
about 19 years of data per station.

The spatiotemporal distribution of gauged streamflow data is
also very uneven. For example, Matundo Cais, the most down-
stream gauging location on the main stem of the Zambezi, only

contains 4 full years of data, while Aswan on the Nile has over
114 years of data available. Other stations used in this comparison
include Vioosdrif on the Orange (22 years), Bagara Diffa in the
Chad basin (23 years), Brazzaville on the Congo (18 years), and
Niamey on the Niger (50 years). The observed flow data predate
the satellite-derived precipitation data from TRMM. However,
they are used in this application because they are currently the
only open-access database of global streamflow available.

The comparisons reveal that the modeling approach captures
the relative magnitude of characteristic flows quite accurately
in the Nile, Congo, and to a lesser extent the Orange basin.
The hydrographs in the Zambezi are generally similar, but the
observed flow record is too short to allow for detailed analysis
off the differences. In the Niger and Chad basins, the simulated
hydrographs peak too early compared to the historical observa-
tions. Similar early peaks in simulated hydrographs have been
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noted in the Inner Delta in the Niger basin (Ducharne et al., 2003)
and in the western marshes in the Chad basin (Coe and Birkett,
2004). These studies have noted a reduction in travel time (as high
as 30-days) beginning in 1997. The changes may be attributable
to changes in marsh vegetation distribution, channel connectiv-
ity and surface-subsurface flow dynamics occurring in inland
marshes under the influence of climate variability and change.
Nonetheless, these problems highlight the need for improved
algorithms for accounting for spatial and temporal variations
in flow velocities in different terrain and land cover types in
GeoSFM and other large scale hydrologic models.

3.2 Flow anomalies characterization

Identification of severe flood or drought events from GeoSFM
simulation results allows for the development of hazard profiles,
particularly in areas where data availability, accessibility, or com-
munication problems limit access to hazard warning information
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Figure 4 Simulations of monthly flow anomalies discharged at the mouth or inland sink of the Lake Chad, Congo, Niger, Nile, Orange and Zambezi
basins between January 1998 and December 2005.

(Asante et al., 2007b). These hazard profiles can serve as a basis
for designing measures to minimize loss of life and damage to
property. Figure 4 shows monthly flows in the six test basins
between 1998 and 2005. The flows are presented in terms of
standard deviations from the mean flow, computed from all 96
monthly flow values for each basin.

Though their magnitudes vary significantly from year to year,
the hydrographs for the two Sahelian basins, the Niger and the
Chad, repeat annually with little changes in shape and timing
of peak flows. The Zambezi and the Nile also experience minor
changes in shape because of interannual differences in the rela-
tive magnitudes of runoff from two different sources within each
basin. In the case of the Zambezi, the two runoff sources are
associated with the passage of the Inter-Tropical Convergence
Zone (ITCZ) over the basin during its southward and north-
ward migrations. In the Nile, the two sources of runoff are the
non-contiguous Great Lakes region for the White Nile and the
Ethiopian Highlands for the Blue Nile. Each year, there are
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Table 1 Listing of the four wettest periods in each test basin and the independent confirmation of
humanitarian impacts in the Emergency Disasters Database and Dartmouth Flood Observatory (DFO)
archive of large flood events. The magnitudes of the flood events are presented in terms of standard
deviations from mean flow. Both the mean and standard deviation are computed from monthly flows.

Basin Source Event 1 Event 2 Event 3 Event 4

Chad Simulation 3.5 (Aug 1999) 2.5 (Aug 1998) 2.5 (Sep 2001) 2.2 (Aug 2003)
Verification EMDAT, DFO – EMDAT1, DFO2 DFO2

Congo Simulation 2.5 (Nov 2002) 2.2 (Nov 2000) 2.2 (Nov 1999) 1.6 (Apr 2002)
Verification EMDAT1, DFO2 – EMDAT1, DFO2 –

Niger Simulation 2.8 (Sep 1999) 2.8 (Sep 1998) 2.4 (Aug 2000) 2.3 (Aug 2003)
Verification EMDAT1, DFO2 EMDAT1, DFO2 EMDAT1 EMDAT1, DFO2

Nile Simulation 4.0 (Sep 1999) 2.9 (Sep 2003) 2.5 (Sep 1998) 1.8 (Sep 2002)
Verification EMDAT1, DFO2 EMDAT1 EMDAT1, DFO2 EMDAT1

Orange Simulation 3.4 (Apr 2001) 3.1 (Apr 2005) 2.8 (Mar 2000) 2.5 (Jan 1998)
Verification – – – –

Zambezi Simulation 3.0 (Feb 2001) 3.0 (Mar 2004) 2.4 (Mar 2000) 2.1 (Feb 1999)
Verification EMDAT1, DFO2 DFO2 EMDAT1, DFO2 EMDAT1, DFO2

1Emergency Disasters Database (EMDAT)
2Global Active Archive of Large Flood Events from Dartmouth Flood Observatory (DFO)

differences in the relative magnitude and timing of flows from
these sources resulting in slight changes in hydrograph shape.
The annual hydrographs in the Congo and the Orange Rivers
exhibit much more interannual variability in distribution and tim-
ing of flows. Improved monitoring of this variability is extremely
important, particularly in the Congo basin which has the poten-
tial to influence regional and even global climate through its
significant freshwater contribution to the Atlantic Ocean.

3.3 Extreme event verification

The flow anomalies presented in Figure 4 can also be used for
identifying extremely wet periods when flooding is likely to
occur. Table 1 presents the magnitude (in standard deviations
from the mean) of the four wettest months in each basin, with a
single peak wetness month selected to represent extended peri-
ods of successively wet months. The peaks from the GeoSFM
simulation were compared with flood events reported in the
global flood archive maintained by the Dartmouth Flood Obser-
vatory (DFO) (Brakenridge, 1999) and the Emergency Disaster
Database (EM-DAT) (Sapir and Misson, 1992). The DFO archive
identifies flood events through media reports with independent
verification from satellite imagery. EM-DAT relies on disaster
declarations and humanitarian assistance calls as well as media
reports of fatalities or impacted populations to initiate a record
of an event.

Of the 24 wet months identified in the simulations, 17 were
reported in one of the two archives as having resulted in flooding
with significant humanitarian impacts. Twelve of the 17 events
were reported in both archives. All four events in each of the
Niger, Chad, Nile and Zambezi basins were verified as having
resulted in humanitarian disasters. This result emphasizes the fact
that simulations are useful for identifying flood events, even when
aggregated to monthly scales. It also highlights the potential com-
plementary role for operational simulation models in identifying

humanitarian events which one of the current global archives
would have missed on their own. The remaining six unveri-
fied events occurred in the Congo and Orange basins which also
exhibited the most variability in shape and timing of annual flows.
Several large dams in the Orange basin including Gariep (5341
million m3), Van der Kloof (3171 million m3), Vaal (2603 million
m3) and Bloemhof (1264 million m3) provide adequate storage
to absorb most flood events, thus diminishing the likelihood of a
humanitarian disaster. This result highlights a potential problem
posed by not incorporating reservoir locations and operations in
the GeoSFM simulations. A development of a global database of
reservoir locations, capacities and operating rules would facil-
itate such modeling efforts. However, the absence of reservoir
data is unlikely to explain the two unverified events in the Congo
because of the absolute magnitude of typical flows in the basin.
A global database specifying the location and timing of flood
hazards from simulated flows would be a useful complement to
existing disaster databases.

4 Conclusions

This paper has presented a geospatial streamflow modeling sys-
tem which is initialized and operated with geospatial datasets of
topography, land cover, soils, daily precipitation and evapotran-
spiration which are freely available on the Internet. Descriptions
of soil moisture accounting and flow routing algorithms included
in the modeling system have also been provided. Model results
have been presented in relative terms to ensure appropriate use of
the information. In applications in several large basins in Africa,
the system is used to characterize the relative magnitude of mean
monthly flows and to identify extreme flood events. The main
limitations of GeoSFM including its inability to predict absolute
flow magnitude and difficulties in characterizing flow travel time
in basins with significant wetlands or reservoir systems.
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In spite of these limitations, the information value of
GeoSFM’s relative flow anomalies is demonstrated by indepen-
dent verification of most major simulated flood events using
records from two open-access flood disaster databases. The
model can provide independent monitoring information to water
managers working in river systems with limited in-situ data. A
common example is in international river basins where admin-
istrative problems prevent downstream countries from accessing
in-situ information on extreme events originating upstream of the
international boundary. Reservoir manager can also use GeoSFM
to generate seasonal reservoir inflow anomalies from seasonal
rainfall forecasts. Flow anomalies can inform water manager
on how expected inflows for the forecast period will compare
with prior years. In such applications, GeoSFM-generated sea-
sonal inflow anomalies can provide a basis for making medium
range water management decisions. In summary, GeoSFM can
fill important information gaps in extreme event monitoring
and medium range water resource management in data sparse
settings.
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